ExxonMobil collaborates on discovery of new material to enhance carbon capture technology

IRVING, Texas – Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have discovered a new material that could capture more than 90 percent of CO2 emitted from industrial sources, such as natural gas-fired power plants, using low-temperature steam, requiring less energy for the overall carbon capture process.

News

ExxonMobil collaborates on discovery of new material to enhance carbon capture technology

Laboratory tests indicate the patent-pending materials, known as tetraamine-functionalized metal organic frameworks, capture carbon dioxide emissions up to six times more effectively than conventional amine-based carbon capture technology. Using less energy to capture and remove carbon, the material has the potential to reduce the cost of the technology and eventually support commercial applications.

By manipulating the structure of the metal organic framework material, the team of scientists and students demonstrated the ability to condense a surface area the size of a football field, into just one gram of mass – about the same as a paperclip – that acts as a sponge for CO2. Results of the research were published today in the international peer-reviewed journal, Science.

“This innovative hybrid porous material has so far proven to be more effective, requires less heating and cooling, and captures more CO2 than current materials,” said Vijay Swarup, vice president of research and development at ExxonMobil Research and Engineering Company.

“Through collaborations with strong academic institutions and national labs like UC Berkeley and the Lawrence Berkeley National Laboratory, we are developing a portfolio of lower-emissions energy solutions. This provides yet another example of one of the many new materials ExxonMobil is researching to reduce CO2 in the production of energy,” said Swarup.

ExxonMobil’s team, led by senior research associate Simon Weston, along with UC Berkeley’s professor Jeffrey Long and his team of faculty and students have been working collaboratively for eight years to develop this potential carbon capture solution that demonstrates stability in the presence of water vapor, without oxidation, allowing carbon dioxide to be captured from various sources, under a number of conditions.

Additional research and development will be needed to progress this technology to a larger scale pilot and ultimately to industrial scale.

The research successfully demonstrated that these hybrid porous metal-organic materials are highly selective and could capture more than 90 percent of the CO2 emitted from industrial sources. The materials have much greater capacity for capturing carbon dioxide and can be regenerated for repeated use by using low-temperature steam, requiring less energy for the overall carbon capture process.

“This exciting advance for carbon capture technology is an outstanding example of how scientists with diverse expertise from universities, national labs, and industry can come together to solve fundamental research challenges,” said Jeffrey Long, professor of chemistry and chemical and biomolecular engineering at University of California, Berkeley and faculty senior scientist at Lawrence Berkeley National Laboratory. “We are grateful to have had such long-term research support from ExxonMobil, without which this discovery would not have been possible. I hope this success will serve to encourage further partnerships between industry and academic research labs.”

ExxonMobil is the world leader in carbon capture, capturing more carbon dioxide than any other company since 1970 and working on a portfolio of carbon capture technologies in collaboration with others. Since 2000, ExxonMobil has invested approximately $10 billion in projects to research, develop and deploy lower-emission energy solutions. The company continues to expand collaborative efforts with more than 80 universities, five energy centers and multiple private sector partners around the world to explore next-generation energy technologies.

The researchers on the technology as written in Science include Simon Weston and Joseph Falkowski from ExxonMobil; Eugene Kim, Henry Jiang, Alexander Forse, Jeffrey Martell, Phillip Milner from the University of California, Berkeley; and Rebecca Siegelman, Jung-Hoon Lee, Jeffrey Neaton, Jeffrey Reimer, Jeffrey Long from the University of California, Berkeley and Lawrence Berkeley National Laboratory.

###

About ExxonMobil

ExxonMobil (XOM), one of the largest publicly traded international energy companies, uses technology and innovation to help meet the world’s growing energy needs. ExxonMobil holds an industry-leading inventory of resources, is one of the largest refiners and marketers of petroleum products, and its chemical company is one of the largest in the world. To learn more, visit exxonmobil.com and the Energy Factor.

Follow us on Twitter and LinkedIn.

About University of California, Berkeley

The University of California, Berkeley, is the world’s premier public university with a mission to excel in teaching, research and public service. This mission has led to the university's distinguished record of world-class scholarship, innovation, concern for the betterment of our world, and top rankings for its schools and departments. UC Berkeley is the flagship of the 10-campus University of California system, originally chartered in 1868. Enrolling more than 42,000 undergraduate and graduate students, the campus has more than 1,500 full-time and 500 part-time faculty members in more than 130 academic departments that offer more than 350 degree programs. Twenty-two Nobel Prizes have been awarded to faculty, and 31 Nobels to alumni.

Cautionary Statement: Statements of future events or conditions in this release are forward-looking statements. Actual future results, including scaling and expanding current research results and the impact and results of new technologies on industrial processes through efficiency gains and emission reductions, could vary depending on the outcome of further research and testing; the development and competitiveness of alternative technologies; the ability to scale pilot projects on a cost-effective basis; political and regulatory developments; and other factors discussed in this release and under the heading “Factors Affecting Future Results” on the Investors page of ExxonMobil’s website at exxonmobil.com.

Contact:

ExxonMobil Media Relations
972-940-6007

University of California, Berkeley
Robert Sanders
rlsanders@berkeley.edu
510-643-6998

More news

The sky is the limit: ExxonMobil and Porsche have supported young entrepreneurs

Late last year, ExxonMobil and Porsche jointly with Russia’s highly popular techno blogger Wylsacom carried out a project, The Sky is the Limit. Three young entrepreneurs presented their respective projects to an expert at the race track sitting in the Porsche 911 Carrera 4s cabin with a professional driver at the wheel.

News releases News

ExxonMobil and Porsche test lower-carbon fuel in race conditions

IRVING, Texas / STUTTGART, Germany – ExxonMobil and Porsche are testing advanced biofuels and renewable, lower-carbon eFuels, as part of a new agreement to find pathways toward potential future consumer adoption.

News releases News

ExxonMobil tests advanced recycling of plastic waste at Baytown facilities

IRVING, Texas – ExxonMobil has completed the initial phase of a plant trial of a proprietary advanced recycling process for converting plastic waste into raw materials for production of high-value polymers. The trial, at the company’s existing facilities in Baytown, Texas, marks another step in ExxonMobil’s efforts to help reduce plastic waste in the environment and maximize resource recovery.

News releases News

ExxonMobil Low Carbon Solutions to commercialize emission-reduction technology

IRVING, Texas – ExxonMobil said today it has created a new business to commercialize its extensive low-carbon technology portfolio. The new business, ExxonMobil Low Carbon Solutions, will initially focus on carbon capture and storage, one of the critical technologies required to achieve net zero emissions and the climate goals outlined in the Paris Agreement.

News releases News

ExxonMobil names Paul L. Kleijnen as new President

MOSCOW – ExxonMobil has appointed Paul L. Kleijnen as president and lead country manager of ExxonMobil Russia Inc., and executive chairman of Exxon Neftegas Ltd., effective February 1. Paul will be based in Moscow.

News releases News

ExxonMobil announces emission reduction plans; expects to meet 2020 goals

IRVING, Texas – ExxonMobil said today it plans further reductions in greenhouse gas emissions over the next five years to support the goals of the Paris Agreement and anticipates meeting year-end 2020 reductions. 

News releases News